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Distributed Compression in Camera Sensor Networks∗

Final Report

Principal Investigator: Pier Luigi Dragotti
Communications and Signal Processing Research Group

Department of Electrical and Electronic Engineering
Imperial College London

1 Introduction and Motivation

Recent advances in sensor network technology are having a profound impact on the way in which
we sense, process and transport signals of interest. A sensor network consists of a large number of
sensor nodes that are densely deployed, either inside or close to a phenomenon of interest. Each
sensor node is an independent, low-power, smart device with sensing, processing and wireless
communication capabilities. The range of applications for sensor networks is extraordinary wide
and covers numbers of different areas such as health, military and home. An excellent survey on
sensor networks can be found in [4].

In this project, we focus on camera sensor networks, that is, we assume that each sensor
is equipped with a digital camera and transmits the acquired visual information to a common
central receiver. The sensors are all observing a certain scene from different viewing positions. The
images acquired by different sensors are therefore highly correlated. If the sensors were allowed
to communicate with each other, it would be easy to exploit this correlation in full and transmit
only the necessary information to the receiver. However, such a collaboration is usually not
feasible since it would require a complex inter-sensor communication system that would consume
most of the sensors’ power. It is therefore necessary to develop separate compression algorithms
that would still be able to exploit the correlation without requiring any cooperation amongst the
sensors.

The distributed compression problem has its information theoretic origins in two papers by
Slepian and Wolf [25], and by Wyner and Ziv [28], which deal with the lossless and lossy com-
pression cases respectively. The theories developed in these papers, however, are non-constructive
and rely on asymptotic random coding arguments. The first constructive design of encoders for
the distributed compression problem was presented in [16] (see also [17]) and is based on the
use of trellis codes. Other more sophisticated channel codes have been subsequentely presented
in [1, 7]. Clearly, these distributed compression techniques can be used in camera sensor networks.
However, in a realistic context the statistics of the source are not known a-priori and channels
codes such as turbo or trellis codes might be too complicated in this context.

The novelty of our approach is that we explicitly use the knowledge of the spatio-temporal
structure of the visual data, which is well described by the plenoptic function [3], to design our

∗Notice that this work has led so far to two conference papers ICIP’05 [8] and DCC’06 [9].
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compression algorithms. The key insight here is that, in many situations, the spatio-temporal
structure of the plenoptic function is particularly constrained and we exploit all the available
a-priori geometric knowledge to facilitate the understanding of such constraints. In particular,
camera locations are usually known with a certain precision (e.g., they might be localized with
a GPS system) and the visual scene of interest might be well localized in space (e.g., assume all
the cameras are pointing to the same region). These geometric elements, in particular the second
one, can be used to develop new more efficient distributed compression schemes.

The report is organized as follows: in the next section, we introduce the problem of distributed
source coding (DSC) and review the theoretical foundations of DSC. Moreover, some practical
coding schemes are reviewed and some new applications based on DSC are highlighted. In Sec-
tion 3, we present our distributed compression approach for camera sensor networks in the case
of a simplified scenario and lossless compression. First, the plenoptic function is introduced, then
our coding scheme is presented in detail. In particular, we show that our approach allows for a
flexible allocation of the bit-rates amongst the encoders, and we propose a solution to the problem
of occlusions. In Section 4, we focus on the case of lossy compression and more realistic multi-view
images. Finally, we conclude in Section 5.

2 Distributed Source Coding

2.1 Theoretical Background

Consider a communication system where two discrete correlated sources X and Y are to be
encoded at rates R1 and R2 respectively, and transmitted to a central receiver. If it were possible
to perform the coding jointly, a rate R1 + R2 ≥ H(X, Y ) would be sufficient to perform noiseless
coding. Now assume that these two sources are physically separated and cannot communicate
with one another, Slepian and Wolf [25] showed that lossless compression of X and Y is still
achievable if R1 ≥ H(X|Y ), R2 ≥ H(Y |X) and R1 + R2 ≥ H(X,Y ). This means that there is no
loss in terms of overall rate even though the encoders are separated (see Figure 1).
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Figure 1: (a) Joint source coding. (b) Distributed source coding. The Slepian-Wolf theorem
(1973) states that a combined rate of H(X, Y ) remains sufficient even if the correlated signals are
encoded separately. (c) The achievable rate region is given by: R1 ≥ H(X|Y ), R2 ≥ H(Y |X) and
R1 + R2 ≥ H(X,Y ).

The proof of the achievability in the Slepian-Wolf theorem is based on random binning. Bin-
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ning, which refers to the partitioning of the space of all possible outcomes of a random source into
different subsets, is a key concept in distributed source coding. The proof is asymptotical and
non-constructive, and no practical coding approach was proposed at that time. An extension of
the Slepian-Wolf result to the lossy case (with continuous sources) was proposed by Wyner and
Ziv in [28]. They addressed a particular case of DSC known as source coding with side information
at the receiver (see Figure 2). Namely, they gave a rate-distortion function R∗

WZ(D) for the prob-
lem of encoding one source X, guarantying an average fidelity of E{d(X, X̂)} ≤ D, assuming that
the other source (playing the role of side information) is available losslessly at the decoder, but
not at the encoder. In particular, they showed that, although Wyner-Ziv coding usually suffers
rate loss compared to the case where the side information is available at both the encoder and
decoder, there is no performance loss if the two correlated sources X and Y are jointly Gaussian
and MSE is used as the distortion metric. This particular result makes Wyner-Ziv coding of
great interest for practical applications, since images and video sources are sometimes modeled
as jointly Gaussian (after mean substraction).
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Figure 2: Lossy compression of X with side information Y . Wyner and Ziv showed that if X and
Y are jointly Gaussian and MSE is used as the distortion metric, there is no performance loss
whether the side information Y is available at the encoder or not, as long as it is available at the
decoder.

Slepian-Wolf and Wyner-Ziv coding are source coding problems. However, a strong link to
channel coding exists, since the practical binning schemes used at the encoders are usually based
on linear channel codes and their coset codes. The next section presents the general idea behind
the design of practical coders based on channel coding principles.

2.2 Practical Coders

In DISCUS [16], Pradhan and Ramchandran proposed for the first time a practical coding tech-
nique for DSC inspired by channel coding techniques. In fact, the link between distributed source
coding and channel coding had already been made at the time by Wyner [27], but nobody had
used it to design practical coders. In order to give the correct intuition behind the DISCUS
approach, we start with a simple example: Assume x and y are two uniformly distributed 3-bit
sequences that are correlated such that their Hamming distance is at most one (i.e., for any
realization of x, y is either equal to x or just differs at one bit’s position). Therefore, given a
certain x, we know that the corresponding y belongs to an equiprobable set of four codewords.
The following entropies can thus be given: H(x) = H(y) = 3 bits, H(x|y) = H(y|x) = 2 bits
and H(x, y) = H(x) + H(y|x) = 5 bits. Therefore, only 5 bits are necessary to jointly losslessly
encode x and y. For instance, one can code x and y jointly by sending one of them completely (3
bits) along with the information representing their difference (2 bits).
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According to Slepian and Wolf, it is possible to achieve the same coding efficiency using
two independent encoders. The solution consists in grouping the different codewords into bins.
Assume that y is transmitted completely to the decoder (using 3 bits), and consider the following
set of bins containing all the possible outcomes for x: bin0 = {000, 111}, bin1 = {001, 110},
bin2 = {010, 101} and bin3 = {100, 011}. Note that the codewords have been placed into the bins
such that the distance between the members of a given bin is maximal (3 in this case). Now,
instead of transmitting x perfectly to the decoder (3 bits), only the index of the bin that x belongs
to is transmitted (2 bits). On receiving this information, the decoder can retrieve the two possible
candidates for x. Finally, since their distance to each other is three, only one of them can satisfy
the correlation with y given by: dH(x, y) ≤ 1. By observing y, the decoder can therefore retrieve
the right value of x.

This intuitive example can be generalized using linear channel codes. Assume that x and y are
two uniformly distributed n-bit sequences that are correlated such that their Hamming distance
is at most m, i.e. dH(x, y) ≤ m. Consider an (n, k) channel code C, given by its parity check
matrix H, that can correct up to M ≥ m errors per n-bit codeword. We call coset number i
the set {xj}2k

j=1 of all n-bit codewords that have a syndrome equal to i (i.e., HxT
j = i). The

code C generates thus 2n−k cosets having 2k members each. Moreover, any pair of codewords
belonging to the same coset have a Hamming distance larger than 2M . Similarly to our previous
example, the distributed coding strategy operates as follows: y is sent perfectly from the second
encoder (n bits). The first encoder only transmit the syndrome sx = HxT (n − k bits). At the
decoder, the original x can be recovered as the only member of coset sx satisfying the correlation
(dH(x, y) ≤ m) with the received y. This distributed encoding approach requires thus only 2n−k
bits to transmit x and y losslessly.

Practical designs based on advanced channel codes such as Turbo and LDPC have been pro-
posed in several papers (see [7, 1, 14] for example). They all propose practical coding approaches
that can closely approach the theoretical bounds for different kind of correlation models. Neverthe-
less, most of these approaches focus on the asymmetric scenario, also known as compression with
side information at the decoder. Approaches allowing to cover the entire Slepian-Wolf achievable
rate region have recently been proposed in [26, 20, 6].

The link between distributed source coding and channel coding is highlighted in Figure 3.
In channel coding, a redundant codeword x is generated by adding parity bits to the original
information block c to be transmitted, such that, after x is sent through the noisy channel, the
corrupted output y still contains enough information to perfectly recover c. In other terms, the
idea is to determine a set of x’s, such that, when any of them is sent through the noisy channel,
the received y is still closer to the original x than to any other member of this set, so that it
is possible to retrieve x from y. An appropriate code is therefore chosen based on the joint
distribution p(x, y). In distributed source coding, x and y represent the two correlated sources to
be transmitted. Assuming that y has been transmitted to the decoder, only the syndrome s of x
needs to be transmitted from the first source. At the decoder, the set of all x’s having syndrome
s is retrieved and the only one satisfying the correlation with y is retrieved as the original x.

4



G

Noisy Channel
p(y|x)

H

Corrector

c  (k bits)

x  (n bits)

y  (n bits)

s  (n-k bits)

x
^

c
^

H

Decoder

x  (n bits) y  (n bits)

s  (n-k bits)

Perfect
channels

x
^ y

Joint distribution p(x,y)

Channel coding Distributed source coding

Figure 3: Channel coding vs. Distributed source coding. In channel coding, the syndrome of y is
used at the decoder to determine the error pattern. Then the original x is recovered by correcting
y. In distributed source coding, the syndrome of x is transmitted to the decoder. Knowing y and
the syndrome of x, the decoder can thus retrieve the difference pattern between x and y and then
reconstruct the original x.
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2.3 New Applications of Wyner-Ziv

2.3.1 Distributed Video Coding

In video coding standards such as MPEG or the more recent H.264, the encoder usually tries to
exploit the statistics of the source signal in order to remove, not only spatial, but also temporal
redundancies. This is usually achieved using motion-compensated predictive encoding, where each
video frame is encoded using a prediction based on previously encoded frames. The prediction
can be seen as a sort of side information and, in this case, is available at both the encoder and
the decoder.

The idea of distributed video coding is to employ DSC approaches in order to allow for an
independent encoding of the different frames at the encoder, while letting to the joint decoder
the burden of exploiting the temporal dependencies. In other terms, each video frame is encoded
independently knowing that some side information will be available at the decoder (the side
information can typically be a prediction based on previously decoded frames).

The first very interesting aspect of distributed video coding is that it considerably reduces
the complexity of the video encoder by shifting all the complex interframe processing tasks to
the decoder. This property can be of great interest for power/processing limited systems such as
wireless camera sensors that have to compress and send video to a fixed base station in a power-
efficient way. Here, it is assumed that the receiver has the ability to run a more complex decoder.
In the case where the receiver of the compressed video signal is another complexity-constrained
device, a solution using a more powerful video transcoder somewhere on the network can be used
(see Figure 4).

Figure 4: Transcoding architecture for wireless video. This method allows for a low-complexity
encoder (Wyner-Ziv encoder) and decoder (MPEG decoder) at both wireless devices. However,
this architecture relies on the use of a complex transcoder somewhere on the network.

Another strong advantage of distributed video coding is that it is naturally robust to the
problem of drift between encoder and decoder. The drift problem is due to prediction mismatch
that can happen due to channel loss and usually creates visual artifacts that propagates until the
next intra-coded frame is received. This built-in robustness is due to the fact that the encoding
is not based on a specific prediction, but only assumes that a relatively good predictor will be
available at the decoder. Therefore, slightly different predictors can lead to a correct decoding.
This particular property highlights the fact that Wyner-Ziv coding can actually be seen as a
source-channel coding problem (see Section 2.3.3).
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The first video coding approach based on distributed compression principles was proposed
in [18], and is known as PRISM. We urge the reader to refer to this original work to obtain
more information about their specific coding architecture. More recently, another video coding
approach based on DSC was proposed in [22], where the authors clearly focused on the robustness
introduced by the use of Wyner-Ziv coding. Finally, a third similar approach can be found in [10].

Although all these approaches are extremely promising, they are still not as efficient as stan-
dard video coders in terms of rate-distortion performance. The gap is mainly due to the fact
that distributed source coding techniques usually rely on the fact that the correlation structure is
known a-priori. It is therefore only with the knowledge of this correlation that optimal codes can
be designed. The estimation of this correlation has proven, however, to be extremely difficult.

2.3.2 Multi-Camera Arrays

Compression techniques for multi-view images have attracted a deep interest during the last
decade. This is partly due to the introduction of several new 3D rendering techniques such as
image-based rendering (IBR) and lightfield rendering (LFR) that represent real-world 3D scenes
using a set of images obtained from fixed viewpoint cameras. The amount of raw data acquired
by practical systems can be extraordinary large and typically consists of hundreds of pictures.
Due to the spatial proximity of the different cameras, an extremely large amount of redundant
information is present in the acquired data. Compression is therefore highly needed.

In order to exploit the correlation between the different views, a joint encoder should be
employed. However, this would require that all the cameras first transmit their raw data to a
common receiver that would have to store it and then perform the joint compression. This would
clearly use a tremendous amount of transmission resources and storage space, and might not be
feasible in some practical settings. For these reasons, it would be preferable to compress the
images directly at the cameras using distributed compression techniques. The main advantages
of such an approach is that it would only require a low-complexity encoder at each camera, and
would considerably reduce the overall amount of transmission necessary from the cameras to
the central decoder. Moreover, the compressed data could be directly stored at the receiver using
optimal memory space. Nevertheless, in this case the decoder is assumed to be more sophisticated
in order to handle the high-complexity joint decoding of the views, when necessary.

Several approaches inspired by distributed video coding have been proposed recently [30, 12,
2]. The basic idea is to see each different view as a frame of a video sequence and apply a
Wyner-Ziv video coding approach to them. Nevertheless, these approaches suffer from several
drawbacks: First, they require that some cameras transmit their full information (to provide side
information to the receiver) while others only transmit partial information. This makes them
clearly asymmetric, which can be a problem for some practical applications. Second, while the
correlation between successive video frames can be difficult to estimate, basic multi-view geometry
could be used when dealing with multi-camera systems. However, none of these approaches takes
advantage of this information so as to improve the performance of their encoders.

2.3.3 Joint Source-Channel Coding

As stated in an excellent review on distributed source coding by Xiong et al. [29]; “Wyner-Ziv
coding is, in a nutshell, a source-channel coding problem”. This property of Wyner-Ziv was
highlighted in Section 2.3.1, where we addressed the fact that distributed video coding presents
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a natural robustness to the problem of drift. In fact, Wyner-Ziv coding can be thought of as
a channel coding technique that is used to correct the “errors” between the source to be coded
and the side information. If we assume that the relationship between the source and the side
information is modeled by a “virtual” correlation channel. Then, if a good channel code for this
“virtual” channel can be found, it would clearly provide us with a good Wyner-Ziv code through
the associated coset codes.

In case of transmission over a non-perfect channel, it seems quite intuitive that the use of
a stronger Wyner-Ziv code could not only compensate for the discrepancies between the source
and the side information, but also correct errors due to the unreliable transmission of the source
sequence. Several papers addressing this particular property of distributed source coding have
recently been published [15, 21].

Finally, Wyner-Ziv coding is also strongly related to systematic lossy source-channel cod-
ing [23], where an encoded version of the source signal is sent over a digital channel to serve as
enhancement information to a noisy version of the source signal received through an analog chan-
nel. Here, the noisy version of the source signal plays the role of side information for decoding
the information received from the digital channel. A detailed description of video coding based
on systematic lossy source-channel coding can be found in [19].

3 Distributed Compression in Camera Sensor Networks

Distributed compression schemes usually rely on the assumption that the correlation of the source
is known a-priori. In this section, we show how it is possible to estimate the correlation structure
in the visual information acquired by a multi-camera system by using some simple geometrical
constraints, and present a coding approach that can exploit this correlation in order to reduce
the overall transmission bit-rate from the camera sensors to the common central receiver. The
coding scheme we propose allows for a flexible distribution of the bit-rates amongst the encoders
and is optimal in many cases. Our technique can intuitively be extended to the general case of
binary sources, and can also be made resilient to a fixed number of visual occlusions.

3.1 The Plenoptic Function

The plenoptic function was first introduced by Adelson and Bergen in 1991 [3]. It corresponds to
the function representing the intensity and chromaticity of the light observed from every position
and direction in the 3D space, and can therefore be parameterized as a 7D function: P7 =
P (θ, φ, λ, t, Vx, Vy, Vz). This function represents thus all the visual information available from any
viewing position around a scene of interest. Hence, image-based rendering (IBR) techniques can
be thought of as methods that try to reconstruct the continuous plenoptic function from a finite
set of views. Once the plenoptic function has been reconstructed, it is then straightforward to
generate any view of the scene by setting the appropriate parameters. The high dimensionality of
this function makes it, however, extremely impractical. By fixing the time t and the wavelength λ,
and assuming that the whole scene of interest is contained in a convex hull, the plenoptic function
can be reduced to a 4-D function. Several methods for representing this 4-D function and for
reconstructing it from sample images have been proposed [11, 13]. The parameterization of this
4-D function is usually done using two parallel planes: the focal plane (or camera plane) and the
retinal plane (or image plane). A ray of light is therefore parameterized by its intersection with
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these two planes. The coordinates in the focal plane (s, t) gives the position of the pinhole camera,
while the coordinates in the retinal plane (u, v) gives the point in the corresponding image.

Epipolar plane images (EPI) are usually used to represent the redundancy in the plenoptic
function such that it can be exploited easily. The idea is to restrict our attention to a 2-D
subspace of the plenoptic function. For example, the (v, t) plane is usually used to represent the
epipolar geometry of a scene, assuming that the pinhole cameras are placed on a horizontal line
(see Figure 6).

3.2 Our Camera Sensor Network Configuration

A camera sensor network is able to acquire a finite number of different views of a scene at any
given time and can thus be seen as a sampling device for the plenoptic function. We choose the
following scenario for our work: Assume that we have N cameras placed on a horizontal line.
Let α be the distance between two consecutive cameras, and assume that they are all looking
in the same direction (perpendicular to the line of cameras). Assume that the observed scene is
composed of simple objects such as uniformly colored polygons parallel to the image plane and
with depths bound between the two values zmin and zmax as shown in Figure 5. According

Figure 5: Our camera sensor network configuration.

to the epipolar geometry principles, which are directly related to the structure of the plenoptic
function (see Figure 6), we know that the difference between the positions of a specific object
on the images obtained from two consecutive cameras will be equal to ∆ = αf

z , where z is the
depth of the object and f is the focal length of the cameras. This disparity ∆ depends only on the
distance z of the point from the focal plane. If we know a-priori that there is a finite depth of field,
that is z ∈ [zmin, zmax], then there is a finite range of disparities to be coded, irrespective of how
complicated the scene is. This key insight can be used to develop new distributed compression
algorithms as we show in the next section.

Notice that a similar insight has been previously used by Chai et al. to develop new schemes
to sample the plenoptic function [5].
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Figure 6: 2D plenoptic function of two points. The t-axis corresponds to the camera position
and v corresponds to the relative positions on the corresponding image. A point of the scene is
therefore represented by a line whose slope is directly related to the point’s depth (z-axis). The
difference between the positions of a given point on two different images thus satisfies the relation
(v − v′) = f(t−t′)

z , where z is the point’s depth and f is the focal length of the cameras.

3.3 Our Coding Approach

In this section, we propose a distributed coding scheme for the configuration presented in Figure 5
with two cameras. Since both encoders have some knowledge about the geometry of the scene,
the correlation structure of the two sources can be easily retrieved. We then show that our coding
technique can be used with any pair of bit-rates contained in the achievable rate region defined
by Slepian and Wolf.

3.3.1 Asymmetric encoding

Let X and Y be the horizontal positions of a specific object on the images obtained from two
consecutive cameras. Assume the image width is made of 2R pixels. Due to the epipolar geometry
and the information we have about the scene, that is (α, f, zmin, zmax), we know that Y ∈ [X +

αf
zmax

, X + αf
zmin

] for a specific X. Encoding X and Y independently would require a total of
H(X) + H(Y ) bits. However, using a coset-like approach, we can transmit X losslessly and
modulo encode Y as Y ′ = Y mod dαf( 1

zmin
− 1

zmax
)e. By observing X and Y ′, the receiver will

then retrieve the correct Y such that Y ∈ [X + αf
zmax

, X + αf
zmin

]. The overall transmission rate is
therefore decreased to H(X) + H(Y ′) bits. If we assume that the difference between X and Y is
uniformly distributed in [ αf

zmax
, αf

zmin
], we can claim that H(Y ′) = H(Y |X). We can see that our

coding scheme uses H(X) + H(Y ′) = H(X) + H(Y |X) = H(X, Y ) bits and is therefore optimal.
This simple distributed coding technique is very powerful since it takes full advantage of the

geometrical information to minimize the global transmission bit-rate. However, its asymmetric
repartition of the bit-rates may be problematic for some practical applications. In the following,
we will show that our coding approach can be extended in a way such that any pair of bit-rates
satisfying the Slepian and Wolf conditions can be used.
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3.3.2 Flexible distribution of the bit-rates

Looking at the following relation: H(X,Y ) = H(X|Y ) + H(Y |X) + I(X,Y ), we can see that
the minimum information that must be sent from the source X corresponds to the conditional
entropy H(X|Y ). Similarly, the information corresponding to H(Y |X) must be sent from the
source Y . The remaining information required at the receiver in order to recover the values of
X and Y perfectly is related to the mutual information I(X, Y ) and is by definition available at
both sources. This information can therefore be obtained partially from both sources in order to
balance the transmission rates.

We know that the correlation structure between the two sources is such that Y belongs to
[X + αf

zmax
, X + αf

zmin
] for a given X. Let Ỹ be defined as Ỹ = Y − d αf

zmax
e. This implies that the

difference (Ỹ − X) is contained in {0, 1, . . . , δ}, where δ = dαf( 1
zmin

− 1
zmax

)e. Looking at the
binary representations of X and Ỹ , we can say that the difference between them can be computed
using only their last Rmin bits where Rmin = dlog2(δ + 1)e. Let X1 and Ỹ1 correspond to the
last Rmin bits of X and Ỹ respectively. Let X2 = (X À Rmin) and Ỹ2 = (Ỹ À Rmin), where
the “À” operator corresponds to a binary shift to the right. We can thus say that Ỹ2 = X2 if
Ỹ1 ≥ X1 and that Ỹ2 = X2 + 1 if Ỹ1 < X1. As presented in Figure 7, our coding strategy consists
in sending X1 and Ỹ1 from the sources X and Y respectively and then, sending only a subset
of the bits for X2 and only the complementary one for Ỹ2. At the receiver, X1 and Ỹ1 are then

Figure 7: Binary representation of the two correlated sources. The last Rmin bits are sent from
the two sources but only complementary subsets of the first (R−Rmin) bits are necessary at the
receiver for a perfect reconstruction of X and Y .

compared to determine if Ỹ2 = X2 or if Ỹ2 = X2 + 1. Knowing this relation and their partial
binary representations, the decoder can now perfectly recover the values of X and Ỹ .

Assume that zmin and zmax are such that (δ+1) is a power of 2. Since we assume that (Ỹ −X)
is uniformly distributed, we can state that H(Ỹ −X) = H(X|Y ) = H(Y |X) = Rmin. Let S(X2)
be a subset of the R − Rmin bits of X2 and let S̄(Ỹ2) corresponds to the complementary subset
of Ỹ2. If we assume now that X is uniformly distributed in {0, 1, . . . , 2R − 1}, we can say that
H(S(X2)) + H(S̄(Ỹ2)) = H(S(X2), S̄(Ỹ2)) = I(X, Y ). The total rate necessary for our scheme
corresponds to I(X, Y )+2Rmin = H(X, Y ) and is therefore optimal. We can now summarize our
results into the following proposition:

Proposition 1 Consider the configuration presented in Figure 5 with two cameras, and assume
that no occlusion happens in the two corresponding views. The following distributed coding strategy
is sufficient to allow for a perfect reconstruction of these two views at the decoder. For each object’s
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position:

• Send the last Rmin bits from both sources, with Rmin = dlog2(δ + 1)e and δ = dαf( 1
zmin

−
1

zmax
)e.

• Send complementary subsets for the first (R−Rmin) bits.

If we assume that X and (Y −X) are uniformly distributed and that δ = 2Rmin − 1, this coding
strategy achieves the Slepian-Wolf bounds and is therefore optimal.

3.3.3 The problem of occlusions

In order to reconstruct the position of an object for any virtual camera position, we need to know
its correct position in at least two different views. Using the epipolar geometry principles, we can
then easily retrieve its absolute position and depth. Unfortunately, a specific object may not be
visible from certain view points since it might be hidden behind another object or might be out
of field. Nevertheless, using a configuration with more cameras will make it more likely for any
object to be visible in at least two views.

Assume we have three cameras in a configuration similar to the one presented in Figure 5 and
that each object of the scene can be occluded in at most one of these three views. Our goal is to
design a distributed coding scheme for these three correlated sources such that the information
provided by any pair of these sources is sufficient to allow for a perfect reconstruction at the
receiver. Let X, Y and Z be the horizontal positions of a specific object on the images obtained
from camera 1, 2 and 3 respectively. We know that Y belongs to [X + αf

zmax
, X + αf

zmin
] and Z

belongs to [X +2 αf
zmax

, X +2 αf
zmin

] for a given X. Moreover, we know that any of these variables is
deterministic given the two others and follows the relation Z = 2Y −X. Let X̃ and Z̃ be defined
as X̃ = X + αf

zmean
and Z̃ = Z − αf

zmean
where zmean is defined such that 1

zmean
= 1

2( 1
zmin

+ 1
zmax

).
This implies that the differences (Y − X̃) and (Z̃ − Y ) are equal and belong to [−δ/2, δ/2] and
that the difference (Z̃ − X̃) belongs to [−δ, δ], where δ is defined as in Section 3.3.2.

Looking at the binary representation of X̃, Y and Z̃ (at integer precision), we can say that
the difference between any pair can be retrieved using only their last Rmin bits, where Rmin =
dlog2(2δ + 1)e. Let X̃1, Y1 and Z̃1 correspond to the last Rmin bits of X̃, Y and Z̃ respectively.
Using a similar approach to that presented in Section 3.3.2, we know that any complementary
binary subsets of X̃2, Y2 and Z̃2 are necessary at the receiver to allow for a perfect reconstruction.
Since one occlusion can happen, we have to choose the binary subsets such that any pair of these
subsets contains at least one value for each of the (R−Rmin) bits. A possible repartition is shown
in Figure 8 (symmetric case). A transmission rate of 2

3r + Rmin for each source is necessary in
this case, where r = R−Rmin.

On receiving the last Rmin bits from only two sources, the decoder is able to retrieve the last
Rmin bits of the third one, which may be occluded. Therefore, the relationship between X̃2, Y2

and Z̃2 can be obtained and only subsets of their binary representations are necessary for a perfect
reconstruction.

3.3.4 Generalization to N cameras with M possible occlusions

We can now generalize our result to any number of cameras and occlusions with the following
proposition (see Figure 9):
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Figure 8: Binary representation of the three correlated sources. The last Rmin bits are sent from
the three sources but only subsets of the first (R−Rmin) bits are necessary at the receiver for a
perfect reconstruction of X, Y and Z even if one occlusion occurs.

Proposition 2 Consider a system with N cameras as depicted in Figure 5. Assume that any
object of the scene can be occluded in at most M ≤ N − 2 views. The following distributed coding
strategy is sufficient to allow for a perfect reconstruction of these N views at the decoder and to
interpolate any new view:

• Send the last Rmin bits of the objects’positions from only the first (M + 2) sources, with
Rmin = dlog2((M + 1)δ)e and δ = dαf( 1

zmin
− 1

zmax
)e.

• For each of the N sources, send only a subset of its first (R − Rmin) bits such that each
particular bit position is sent from exactly (M + 1) sources.

Figure 9: Binary representation of the N correlated sources. The last Rmin bits are sent only
from the (M +2) first sources. Only subsets of the first (R−Rmin) bits are sent from each source,
such that each bit position is sent exactly from (M + 1) sources.
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3.3.5 Simulation results

We developed a simulation to illustrate the performance of our distributed compression scheme.
We created an artificial scene composed of simple objects such as polygons of different intensities
placed at different depths. Our system could then generate any view of that scene for any specified
camera position. In the example presented in Figure 10, we generated three views of a simple
scene composed of three objects such that one of them is occluded in the second view, and another
one is out of field in the third view. The three generated images have a resolution of 512× 512

X1 X2 X3

Figure 10: Three views of a simple synthetic scene obtained from three aligned and evenly spaced
cameras. Note that an occlusion happens in X2 and that an object is out of field in X3.

pixels and are used as the inputs for the testing of our distributed compression algorithm. Each
encoder applies first a simple corner detection to retrieve the vertex positions of their visible
polygons. Each vertex (x, y) is represented using 2R = 2 log2(512) = 18 bits. Each encoder
knows the relative locations of the two other cameras (α = 100) but does not know the location
of the objects on the other images. It only knows that the depths of the objects are contained
in [1.95, 5.05] and that f = 1. Depending on its depth, an object will thus be shifted from 20 to
51 pixels between two consecutive views. This means that the difference ∆ on two consecutive
positions can be described using Rmin = log2(51− 19) = 5 bits.

In order to be resilient to one occlusion, we applied the approach proposed in Section 3.3.3.
The results showed that only 14 bits per vertex were necessary from each source (instead of 18)
to allow for a perfect reconstruction of the scene at the receiver. When repeating the operation
with three other views and assuming that no occlusion was possible, only 8 bits per vertex were
necessary from each source.

4 Lossy distributed compression in Camera Sensor Network

The coding approach proposed in Section 3 can theoretically achieve the Slepian-Wolf bound
and gives us a precise intuition on how distributed compression should be applied to multi-view
images. However, it assumes that the location of the objects’ boundaries are known a-priori, and
is therefore not directly applicable to encode real multi-view images. In this section, we show
how we extended the above method to the case of more realistic multi-view images. We used two
different approaches. The first one based on quad-tree decomposition of the images, the second
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one on a distributed version of the wavelet transform.

4.1 Distributed compression using tree structured algorithms

Since the correlation model used by our distributed coding approach is related to the object’s
positions on the different views, we need to develop coding algorithms that can efficiently repre-
sent these positions. Our approach consists in representing the different views using a piecewise
polynomial model. The main advantage of such a representation is that it is well adapted to
represent real images and that it is able to precisely catch the discontinuities between the objects.
Two different views can therefore be modeled using a piecewise polynomial signal where each
discontinuity is shifted according to the correlation model ∆i ∈ {∆min, ∆max}. If we assume that
the scene is composed of lambertian planar surfaces and that no occlusion occurs in the different
views, we can then claim that the polynomial pieces are similar for the different views.1

In [24], Shukla et al. presented new coding algorithms based on tree structured segmentation
that achieve the correct asymptotic rate-distortion (R-D) behaviour for piecewise polynomial
signals. Their method is based on a prune and join scheme that can be used for 1D (using
binary trees) or for 2D (using quadtrees) signals. We highlight here the main elements of their
compression algorithm for 1D signals.

Algorithm 1 Prune-Join binary tree coding algorithm [24]
1: Segmentation of the signal using a binary tree decomposition up to a tree depth Jmax.
2: Approximation of each node of the tree by a polynomial p(t) of degree ≤ P .
3: Rate-Distortion curves generation for each node of the tree (scalar quantization of the poly-

nomial coefficients).
4: Optimal pruning of the tree for the given operating slope −λ according to the following

Lagrangian cost based criterion: Prune the two children of a node if (DC1 + DC2) + λ(RC1 +
RC2) ≥ (Dp + λRp).

5: Joint coding of similar neighbouring leaves according to the following Lagrangian cost based
criterion: Join the two neighbours if (Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint + λRnJoint).

6: Search for the desired R-D operating slope (update λ and go back to point 4).

Our distributed coding strategy which is based on these tree-structured algorithms can be
summarized as follows. (For simplicity we focus on the 1D case).

Let f1(t) be a piecewise polynomial signal defined over [0;T ] consisting of S + 1 polynomial
pieces of maximum degree P each. Let {t1i}S

i=1 be its set of the S distinct discontinuity locations.
We define f2(t) as another piecewise polynomial function over [0;T ] having the same polynomial
pieces than f1(t), but whose set of discontinuity locations {t2i}S

i=1 is chosen such that: ∆min ≤
t2i − t1i ≤ ∆max, ∀i ∈ {1, . . . , S}. The relationship between f1(t) and f2(t) is therefore given by
the range of possible disparities [∆min;∆max] which corresponds to the plenoptic constraints we
consider in our camera sensor network scenario.

Assume that these two signals are independently encoded using the prune-join algorithm for a
given distortion target. The total information necessary to describe each of them can be divided

1With non-lambertian surfaces, or with the presence of occlusions, the polynomial pieces can differ for the
different views. Our simple correlation model should therefore be modified in this case. For the sake of simplicity,
we will however only consider this simple model to present our coding approach.
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in 3 parts: RTree is the number of bits necessary to code the pruned tree and is equal to the
number of nodes in the tree. RLeafJointCoding is the number of bits necessary to code the joining
information and is equal to the number of leaves in the tree. Finally, RLeaves is the total number
of bits necessary to code the set of polynomial approximations.

Figure 11 presents a prune-join tree decompositions of two piecewise constant signals, having
the same set of amplitudes and having their sets of discontinuities satisfying our plenoptic con-
straints. Due to this relationship between the two signals, we can observe that the structure of
the two pruned binary trees presents some similarities. Our distributed compression algorithm
uses these similarities in order to transmit only the necessary information to allow for a perfect
reconstruction at the decoder. It can be described as follows (asymmetric encoding):

• Send the full description of signal 1 from encoder 1. (R1 = RTree1 + RLeafJointCoding1 +
RLeaves1)

• Send only the subtrees of signal 2 having a root node at level J∆ along with the joining
information from encoder 2, where J∆ = dlog2(

T
∆max−∆min+1)e. (R2 = (RTree2 − R∆2) +

RLeafJointCoding2 where R∆ corresponds to the number of nodes in the pruned tree with a
depth smaller than J∆.)
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Figure 11: Prune-Join binary tree decomposition of two piecewise constant signals satisfying our
correlation model.

At the decoder, the original position of the subtrees received from encoder 2 can be recovered
using the side information provided by encoder 1, such that all the disparities satisfy the plenoptic
constraints. The full tree can then be recovered and the second signal can thus be reconstructed
using the approximations received from encoder 1.

The prune-join binary tree decomposition used in our approach has an intuitive extension to
the 2D case, where the binary tree segmentation is replaced by the quad-tree segmentation and
the polynomial model is replaced by a 2D geometrical model. Although our approach becomes
more involved in the 2D case, the intuitions remain the same. The geometrical model used in
2D corresponds to two 2D polynomials separated by a 1D polynomial boundary. Notice that
the quad-tree compression algorithm proposed in [24] outperform Jpeg2000. For this reason we
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are confident that its use in the multi-view context will lead to good simulation results. This is,
however, part of our on-going work.

This distributed compression algorithm have been applied to a set of scan lines of real multi-
view images. We present a simulation on a scan line of a pair of stereo images (Figure 12) using a
piecewise linear model and a symmetric encoding strategy. The reconstructed signals (Figure 13)
present a good level of accuracy for the reconstruction of the two scan-lines.
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Figure 12: Stereo images of a real scene where the objects are located between a minimum and a
maximum distance from the cameras.
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Figure 13: Reconstructed scan lines of stereo images (Figure 12) using a piecewise linear model
for the binary tree decomposition and a symmetric distributed compression approach.

4.2 Distributed compression based on the wavelet transform

The wavelet transform has had a tremendous impact on image compression recently and the new
image compression standard (Jpeg2000) is based on wavelets. It is therefore natural to explore
possible extensions of this transform to the distributed case.

The standard centralized wavelet transform simply consists of two 1-D wavelets applied along
the rows and columns of the image. A block diagram of the standard wavelet transform is illus-
trated in Figure 14. The filter L0 is usually a low pass filter while H0 is high pass. Downsampling
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is first performed on columns and then on rows. The process is usually iterated on the ‘low-low’
pass version of the image. The resulting transformed image after three iterations is shown in
Figure 15. In a classical compression algorithm, the wavelet coefficients are then quantized and
entropy encoded.
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Figure 14: Separable wavelet transform:
block diagram

Figure 15: Three iterations of the separable
wavelet transform

Our distributed algorithm is based on the geometrical assumptions of Section 3. In particular,
we assume that the disparity ∆ between the coordinates of the same object in two consecutive
images is bounded. Because of this assumption, if we consider two images obtained from two
neighbor sensors and take a wavelet transform of each image, we can prove that the two trans-
formed images differ in the high pass components only. Therefore by transmitting a compressed
version of one of the two images and only the high pass version of the other one, we can infer,
at the decoder, the disparity between the objects in the two images and reconstruct both images
faithfully.

More precisely the algorithm operates as follows. The first image is compressed using a
classical wavelet based image compression algorithm, the second image is wavelet transformed
and only its high-pass components are compressed and transmitted to the receiver. The decoder
reconstructs the first image and a high-pass version of the second one. Using a classical disparity
block-matching algorithm, the decoder then estimates the disparity between the objects in the
two images and reconstruct a more faithful version of the second one.

Simulation results are shown in Figure 16. In this simulation we have not performed quan-
tization of the wavelet coefficients, but simply removed all the wavelet coefficients below a fixed
threshold. The threshold was chosen so that only 20% of the coefficients were retained. Fig-
ure 16(a) shows the two original stereo images. The compression results for the case in which a
classical separate encoder was used, are shown in Figure 16(b). In this case, the average PSNR is
24.9dB. In Figure 16(c) we present the result for our approach where with the same compression
rate we can achieve a PSNR of 29.6dB.

5 Conclusions

We have proposed a distributed compression approach for camera sensor networks. In particular,
we have shown how simple geometrical information about the scene and the position of the cameras
can be used to estimate the correlation structure between different views. Our approach allows
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for a flexible distribution of the bit-rates amongst the encoders, and can be made resilient to a
fixed number of occlusions. Two different approaches to deal with real multi-view images have
been also proposed. The first one is based on a quad-tree decomposition of images, while the
second one is based on extensions of the wavelet transform. Both methods show good results
when applied to real stereo images. For the case of quad-tree algorithm we are at the moment
only able to operate on a single scan-line per time. The wavelet methods, on the other hand,
operates on the entire image.
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Figure 16: Distributed compression using the wavelet transform. (a) Original stereo images. (b)
Separate compression (PSNR=24.9dB). (c) Our Distributed compression algorithm (PSNR=29.6
dB).
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